Abstract

We report that explosive synchronization of networked oscillators (a process through which the transition to coherence occurs without intermediate stages but is rather characterized by a sudden and abrupt jump from the network's asynchronous to synchronous motion) is related to self-similarity of synchronous clusters of different size. Self-similarity is revealed by destructing the network synchronous state during the backward transition and observed with the decrease of the coupling strength between the nodes of the network. As illustrative examples, networks of Kuramoto oscillators with different topologies of links have been considered. For each one of such topologies, the destruction of the synchronous state goes step by step with self-similar configurations of interacting oscillators. At the critical point, the invariance of the phase distribution in the synchronized cluster with respect to the cluster size is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.