Abstract
AbstractIn this paper we derive self-similar solutions of flows through both a porous medium and a pure fluid. Self-similar filtration velocity and hydrodynamic shear profiles are obtained by means of asymptotic analysis in the limit of infinitely small permeability, and for both laminar and turbulent regimes over the porous medium. We show that a spatial length scale, related to the porous layer thickness, naturally emerges from the limiting process and suggests a more formal definition of thick and thin porous media. We finally specialize the analysis to porous media constituted of patterned cylindrical obstacles, which can freely deflect under the aerodynamic shear exerted by the fluid flowing through and over the forest. A self-similar solution for the bending profile of the elastic cylindrical obstacles is obtained as intermediate asymptotics, and applied to carbon nanotube (CNT) forests’ response to aerodynamic stresses. This self-similar solution is successfully used to estimate flexural rigidity of CNTs by linear fit of appropriately rescaled maximum deflection and average velocity measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.