Abstract
Ecological communities exhibit pervasive patterns and interrelationships between size, abundance, and the availability of resources. We use scaling ideas to develop a unified, model-independent framework for understanding the distribution of tree sizes, their energy use, and spatial distribution in tropical forests. We demonstrate that the scaling of the tree crown at the individual level drives the forest structure when resources are fully used. Our predictions match perfectly with the scaling behavior of an exactly solvable self-similar model of a forest and are in good accord with empirical data. The range, over which pure power law behavior is observed, depends on the available amount of resources. The scaling framework can be used for assessing the effects of natural and anthropogenic disturbances on ecosystem structure and functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.