Abstract

In this paper, we discuss the large-time behavior of solution of a simple kinetic model of Boltzmann–Maxwell type, such that the temperature is time decreasing and/or time increasing. We show that, under the combined effects of the nonlinearity and of the time-monotonicity of the temperature, the kinetic model has non trivial quasi-stationary states with power law tails. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution. The same idea is applied to investigate the large-time behavior of an elementary kinetic model of economy involving both exchanges between agents and increasing and/or decreasing of the mean wealth. In this last case, the large-time behavior of the solution shows a Pareto power law tail. Numerical results confirm the previous analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call