Abstract
Both the Rouse and Doi-Edwards models can be expressed by the relaxation spectra, in the form of power-law functions. The concept of self-similarity has offered a simple solution to many problems in polymer physics. Since the solutions derived from self-similarity are power-law functions, it is essential to check whether the relaxation spectrum of polymeric fluids can be derived by self-similarity. In this study, the power-law spectrum of an unentangled polymer solution is derived by using the self-similarity approach, which does not work for entangled polymeric fluids. Although Baumgaertel et al. (Rheol. Acta 29, 400–408 (1990)) showed that the power-law spectrum can quantitatively describe the linear viscoelasticity of monodisperse polymer melts, regardless of molecular weight, they did not find the universality of the exponent of the spectrum because they found different exponents for different polymers. Under the consideration existing the universality of linear viscoelasticity of polymer melts, this paper deals with the universality of the exponent by employing a new regression algorithm and confirms that the exponent is independent of the type of polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.