Abstract

We define multi-self-similar random fields, that is, random fields that are self-similar component-wise. We characterize them, relate them to stationary random fields using a Lamperti-type transformation and study these stationary fields. We also extend the notions of local stationarity and local stationarity reducibility to random fields. Our work is motivated by applications arising from climatological and environmental sciences. We illustrate these new concepts with the fractional Brownian sheet and the Lévy fractional Brownian random field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.