Abstract

The self-similar one-dimensional flow behind a plane shock propagating upward into an exponentially decreasing atmosphere is considered. The flow is taken to be isothermal in view of the large radiation mean free paths associated with high altitudes and the intense radiation heat transfer accompanying the high temperatures characteristic of an accelerating shock wave. The equations of motion are formulated in Lagrangian coordinates and are integrated exactly for all values of the shock density ratio. Solutions are presented for the cases where the boundary conditions at the shock correspond to a Hugoniot shock and to a Chapman-Jouguet shock. A significant result of the analysis is that in both of these cases the shock propagates much faster than for the case of adiabatic flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.