Abstract

ABSTRACTThis papers deals with the large time behavior of solutions of the incompressible Euler equations in dimension 2. We consider a self-similar configuration of point vortices which grows like the square root of the time. We study the confinement properties of a blob of vorticity initially located around the first point vortex and moving in the velocity field produced by itself and by the other point vortices. We find a sufficient condition on the point vortices such that the vorticity stays confined around the first point vortex at a rate better than the square root of the time. The relevance to the large time behavior of the Euler equations is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.