Abstract
We study the universal nonstationary evolution of wave turbulence (WT) in Bose-Einstein condensates (BECs). Their temporal evolution can exhibit different kinds of self-similar behavior corresponding to a large-time asymptotic of the system or to a finite-time blowup. We identify self-similar regimes in BECs by numerically simulating the forced and unforced Gross-Pitaevskii equation(GPE) and the associated wave kinetic equation(WKE) for the direct and inverse cascades, respectively. In both the GPE and the WKE simulations for the direct cascade, we observe the first-kind self-similarity that is fully determined by energy conservation. For the inverse cascade evolution, we verify the existence of a self-similar evolution of the second kind describing self-accelerating dynamics of the spectrum leading to blowup at the zero mode (condensate) at a finite time. We believe that the universal self-similar spectra found in the present paper are as important and relevant for understanding the BEC turbulence in past and future experiments as the commonly studied stationary Kolmogorov-Zakharov (KZ) spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.