Abstract
The problem of the convergence of a spherical shock wave (SW) to the centre, taking into account the thermal conductivity of the gas in front of the SW, is considered within the limits of a proposed approximate model of a heat conducting gas with an infinitely high thermal conductivity and a small temperature gradient, such that the heat flux is finite in a small region in front of the converging SW. In this model, there is a phase transition in the surface of the SW from a perfect gas to another gas with different constant specific heat and the heat outflow. The gas is polytropic and perfect behind the SW. Constraints are derived which are imposed on the self-similarity indices as a function of the adiabatic exponents on the two sides of the SW. In front of the SW, the temperature and density increase without limit. In the general case, a set of self-similar solutions with two self-similarity indices exists but, in the case of strong SW close to the limiting compression, there are two solutions, each of which is completely determined by the motion of the spherical piston causing the self-similar convergence of the SW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.