Abstract
This paper presents the optimisation of cold-formed steel open columns using the recently developed self-shape optimisation method that aims to discover new profile shapes. The strength of the cold-formed steel sections is calculated using the Direct Strength Method, and the rules developed in the present work to automatically determine the local and distortional elastic buckling stresses from the Finite Strip and constrained Finite Strip Methods are discussed. The rules are verified against conventional and optimum sections yielded in this research, and found to accurately predict the elastic buckling stresses. The optimisation method is applied to singly-symmetric (mono-symmetric) cold-formed steel columns, and the operators behind the method for the special case of singly-symmetric open profiles are introduced in this paper. “Optimum” cross-sections for simply supported columns, 1.2mm thick, free to warp and subjected to a compressive axial load of 75kN are presented for column lengths ranging from 1000 to 2500mm. Results show that the optimum cross-sections are found in a relatively low number of generations, and typically shape to non-conventional “bean”, “oval” or rounded “Σ” sections. The algorithm optimises for distortional and global buckling, therefore likely subjecting the cross-sections to buckling interaction. A manual attempt to redraw the “optimum” cross-sections to include limitations of current manufacturing processes is made. Future developments of the method for practical applications are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.