Abstract

BackgroundSunglasses users may only be assured on their ultraviolet protection by purchasing certified products, however they are not able to check if sunglasses are still ultraviolet (UV) protected as they age, unless they resort themselves to a professional who is qualified for using a spectrophotometer and is acknowledged on the standards for providing a report for the user. Current literature establishes safe limits on the exposure of the eyes relatively to the ultraviolet radiation exposure for the UVA and UVB ranges (280 nm – 400 nm). The UV protection is category dependent. Sunglasses are categorized from 0 to 4 and the categories are determined by the lenses transmission’s percentage on the visible range (380 nm – 780 nm).MethodsIn order to overcome inaccessibility of such measurements on sunglasses, a prototype for testing ultraviolet protection on sunglasses, according to Brazilian Standards, has been developed for amateur use. The system consists of assembling UVA and UVB light sources and two UV responsive photodiode sensors, with Erythema action response for measuring UV protection; for categories measurements, combination of white light and LEDs were used for the visible range, as well as a light sensor having spectral response similar to the human eye. Electronics has been developed for controlling the measurements and software has been implemented for providing the report as well as for the user’s interface.ResultsAll the system was embedded as a self-service touch screen kiosk and provides transmittance measurements that are within the deviation limit required by NBR15111, i.e., 0.25%. Measurements were performed in over 45 sunglasses and compared to CARY 5000 – VARIAN spectrophotometer and present a good correlation for the measurements of transmittance in the visible spectral range (r2 = 0.9999) and in the ultraviolet range (r2 = 0.9997).ConclusionsThe prototype identifies the UV protection, for non-corrective sunglasses, according to category of the lens and is available for the public. In addition to educating the population about the importance of wearing protected sunglasses, the prototype has also allowed the public to have access to information about the quality of protection of their own sunglasses in an easy and free testing method.

Highlights

  • Sunglasses users may only be assured on their ultraviolet protection by purchasing certified products, they are not able to check if sunglasses are still ultraviolet (UV) protected as they age, unless they resort themselves to a professional who is qualified for using a spectrophotometer and is acknowledged on the standards for providing a report for the user

  • A number of ocular diseases in the internal structures of the eye are related to UV radiation exposure, such as cataract [3]

  • Transmittance measures include ultraviolet radiation (UVR) for an effective protection test of spectacles against eye diseases [6,7], infrared radiation, and traffic signal light radiation, so that minimum thresholds required for traffic signs visibility and visible radiation can be established

Read more

Summary

Introduction

Sunglasses users may only be assured on their ultraviolet protection by purchasing certified products, they are not able to check if sunglasses are still ultraviolet (UV) protected as they age, unless they resort themselves to a professional who is qualified for using a spectrophotometer and is acknowledged on the standards for providing a report for the user. Sunglasses are categorized from 0 to 4 and the categories are determined by the lenses transmission’s percentage on the visible range (380 nm – 780 nm) It is still controversial in literature the harms of UV radiation for each component of the ocular media. Transmittance measures include ultraviolet radiation (UVR) for an effective protection test of spectacles against eye diseases [6,7], infrared radiation, and traffic signal light radiation, so that minimum thresholds required for traffic signs visibility and visible radiation can be established These measures ensure the minimum safety requirements to the population, indicating excessively dark lenses, which can limit the ability to identify objects in shadows while driving, extremely colored lenses, which can affect the detection and recognition of colors, and filter protection against harmful UV radiation

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.