Abstract

Recently, efforts have been made to manufacture self-sensing smart composites by integrating piezoelectric sensors with laminates. However, the interleaving of pressure sensors, such as piezoelectric polymeric films, dramatically reduces the impact resistance of the hosting laminates, and consequently, delamination can occur. This study aimed to fabricate a self-sensing composite material by embedding piezoelectric nanofibers of poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) in a polymeric elastic matrix and carbon black-based electrodes to detect a piezoelectric signal. The mechanical and electrical properties of the self-sensing laminate were maintained after 106 fatigue test cycles. By appropriately tuning the parameters of the acquisition circuit, the sensor could measure not only impulsive loads but also low-frequency loads as low as 0.5 Hz. A piezoelectric model with lumped parameters for the polarization process and piezoelectric response of the nanofibers is proposed and validated by experimental results. As a proof of the model, the piezoelectric nanofiber sensors were embedded in a prosthetic carbon fiber sole, and the piezoelectric signal response closely followed the ground reaction force with a sensitivity of 0.14 mV/N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.