Abstract

In a self-sensing active magnetic bearing (AMB) system driven by pulse width modulation (PWM) switching power amplifiers, the rotor position information can be extracted from coil current and voltage signals by a specific signal demodulation process. In this study, to reduce the complexity of hardware, the coil voltage signal was not filtered but measured in the form of a duty cycle by the eCAP port of DSP (TMS320F28335). A mathematical model was established to provide the relationship between rotor position, current ripple, and duty cycle. Theoretical analysis of the amplitude-frequency characteristic of the coil current at the switching frequency was presented using Fourier series, Jacobi-Anger identity, and Bessel function. Experimental results showed that the time-varying duty cycle causes infinite side frequencies around the switching frequency. The side frequency interval depends on the varying frequency of the duty cycle. Rotor position can be calculated by measuring the duty cycle and demodulating the coil current ripple. With this self-sensing strategy, the rotor system supported by AMBs can steadily rotate at a speed of 3000 r/min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.