Abstract
This paper presents a self-scheduling model for home energy management systems (HEMS) in which a novel formulation of a linear discomfort index (DI) is proposed, incorporating the preferences of end-users in the daily operation of home appliances. The HEMS self-scheduling problem is modelled as a mixed-integer linear programming (MILP) multi-objective problem, aimed at minimizing the energy bill and DI. In this framework, the proposed DI determines the optimal time slots for the operation of home appliances while minimizing end-users’ bills. The resulting multi-objective optimization problem has then been solved by using the epsilon-constraint technique and the VIKOR decision maker has been employed to select the most desired Pareto solution. The proposed model is tested considering tariffs in the presence of various price-based demand response programs (DRP), namely time-of-use (TOU) and real-time pricing (RTP). In addition, different scenarios considering the presence of electrical energy storage (EES) are investigated to study their impact on the optimal operation of HEMS. The simulation results show that the self-scheduling approach proposed in this paper yields significant reductions in the electricity bills for different electricity tariffs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.