Abstract

ABSTRACTFor biological and mechanical systems involving moving parts, surface slipperiness is often a critical attribute for their optimal functions. Surface grafting with hydrophilic polymers is a powerful means to render materials slippery in aqueous environment. In “inverted grafting-to approach”, the hydrophilic polymer chains of amphiphilic diblock copolymers dispersed within a poly(dimethylsiloxane) (PDMS) network are selectively segregated upon exposure to aqueous solution. This allows formation of extremely stable brush-like polymer layers. Tribological application of inverted grafting-to approach was successfully demonstrated with PDMS-block-poly(acrylic acid) (PDMS-b-PAA) dispersed within thin PDMS films on PDMS blocks by showing friction coefficients (µ) of ca 10-2 to 10-3, depending on the load, pH and buffer salinity in the absence of other external re-supply of PAA chains. Further manipulations of the thin PDMS film incorporating PDMS-b-PAA to optimize the tribological properties are presented. Lastly, first trials to employ PAA-grafted PDMS surface to generate in-vitro mucosae model are also presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.