Abstract

The efficacy of nanoradiosensitizers in cancer therapy has been primarily impeded by their limited accessibility to radioresistant cancer cells residing deep inside tumor tissues. The failure to report tumor response to radiotherapy generally delays adjustment of the treatment schedule and sets up another substantial obstacle to clinical success. Here, we develop a nanopomegranate (RNP) platform that not only visualizes the cancer radiosensitivities but also potentiates deep tissue cancer radiotherapy via elevated passive diffusion and active transcytosis. The RNPs are engineered through the programmed self-assembly of a tumor environment-targeting polymeric matrix and modular building blocks of ultrasmall gold nanoparticles (Au5). Once RNPs reach the tumors, the environmental acidity triggers the splitting and surface cationization of Au5. The small dimension of Au5 allows its passive diffusion, while positive surface charge enables its active transcytosis to cross the tumor interstitium. Meanwhile, the reporter element monitors the feedback of favorable radiotherapy responsiveness by detecting the activated apoptosis after radiation. The pivotal role of RNPs in improving and identifying radiotherapeutic outcomes is demonstrated in various tumor bearing mouse models with different radiosensitivities. In summary, our strategy offers a promising paradigm for deep tissue drug delivery as well as individualized precision radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.