Abstract

In the realm of wearable electronics, the development of materials that can endure and adapt to the human experience while harvesting energy is paramount. Herein, we introduce a novel self-healable thermoplastic polyurethane (TPU) for a triboelectric nanogenerator (TENG) that harmonizes self-healing efficacy with mechanical durability. Utilizing a unique electrospinning technique, we engineered TPU fibers that not only exhibit remarkable elasticity—withstanding over 600% strain—but also possess the capability to self-repair at just 80 ºC. For the negative triboelectric layers, beside choosing fluorinated ethylene propylene (FEP) as the main electron-withdrawing surface, the introduction of molybdenmum disulfide (MoS2) as a charge-trapping layer exploits its two-dimensional structure to enhance both the stretchability and electrical output of the TENG. Our study demonstrates the TENG’s proficiency in energy generation, producing up to 1000 V from vigorous motion and maintaining a consistent output after mechanical stress and chemical exposure. Moreover, the device showcases excellent motion-sensing capabilities and can power up to 200 (light-emitting diodes) LEDs, underscoring its efficiency and adaptability. This robust TENG sets a precedent for self-healing materials in sustainable energy devices and marks a substantial advance towards their integration into everyday wearables. The culmination of these features highlights the potential mass application of TENGs, paving the way for their ubiquitous adoption in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.