Abstract

An exact steady-state solution of the stochastic equations governing the behavior of a gene regulated by a self-generated proteomic atmosphere is presented. The solutions depend on an adiabaticity parameter measuring the relative rate of DNA-protein unbinding and protein degradation. The steady-state solution reveals deviations from the commonly used Ackers et al approximation based on the equilibrium law of mass action, allowing anticooperative behavior in the "nonadiabatic" limit of slow binding and unbinding rates. Noise from binding and unbinding events dominates the shot noise of protein synthesis and degradation up to quite high values of the adiabaticity parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.