Abstract

The future redefinition of the international system of units in terms of natural constants requires a robust, high-precision quantum standard for the electrical base unit ampere. However, the reliability of any single-electron current source generating a nominally quantized output current I=ef by delivering single electrons with charge e at a frequency f is eventually limited by the stochastic nature of the underlying quantum mechanical tunneling process. We experimentally explore a path to overcome this fundamental limitation by serially connecting clocked single-electron emitters with multiple insitu single-electron detectors. Correlation analysis of the detector signatures during current generation reveals erroneous pumping events and enables us to determine the deviation of the output current from the nominal quantized value ef. This demonstrates the concept of a self-referenced single-electron source for electrical quantum metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.