Abstract

The question of how far the larvae of marine organisms disperse is fundamental to an understanding of their population dynamics1,2,3, the management of exploited species4,5 and the conservation of marine biodiversity6,7. It is generally assumed that larvae disperse away from their natal population so that local populations operate as ‘open’ systems, driven by recruitment of larvae from other sub-populations8. However, this assumption has never been critically tested. Here we show for the first time that juveniles from a coral reef fish population can return to their natal reef. We marked otoliths (ear bones) of over 10 million developing embryos of the damselfish, Pomacentrus amboinensis, at Lizard Island (Great Barrier Reef). Subsequently, from an examination of 5,000 juveniles settling at the same location, we found 15 marked individuals. On the basis of an estimate of the proportion of embryos marked (0.5–2%), as many as 15–60% of juveniles may be returning to their natal population (self-recruitment). We challenge the assumption that long-distance dispersal is the norm for reef fish populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.