Abstract

This paper presents an evolvable hardware system, fully contained in an FPGA, which is capable of autonomously generating digital processing circuits, implemented on an array of processing elements (PEs). Candidate circuits are generated by an embedded evolutionary algorithm and implemented by means of dynamic partial reconfiguration, enabling evaluation in the final hardware. The PE array follows a systolic approach, and PEs do not contain extra logic such as path multiplexers or unused logic, so array performance is high. Hardware evaluation in the target device and the fast reconfiguration engine used yield smaller reconfiguration than evaluation times. This means that the complete evaluation cycle is faster than software-based approaches and previous evolvable digital systems. The selected application is digital image filtering and edge detection. The evolved filters yield better quality than classic linear and nonlinear filters using mean absolute error as standard comparison metric. Results do not only show better circuit adaptation to different noise types and intensities, but also a nondegrading filtering behavior. This means they may be run iteratively to enhance filtering quality. These properties are even kept for high noise levels (40 percent). The system as a whole is a step toward fully autonomous, adaptive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.