Abstract

Immune homeostasis in the gut associated lymphoid tissues (GALT) is critical to prevent the development of inadvertent pathologies. B cells as the producers of antibodies and cytokines plays an important role in maintaining the GALT homeostasis. However, the mechanism by which B cells specifically direct their responses towards non-self-antigens and become ignorant to self-antigens in the GALT is not known. Therefore, we developed a novel mouse model by expressing Duck Egg Lysozyme (DEL) in gut epithelial cells in presence of HEL reactive B cells. Notably, we observed a transient activation and rapid deletion of self-reactive B cells in Peyers Patches and Mesenteric lymph nodes upon self-antigen exposure. The survival of self-reactive B cells upon exposure to their self-antigen was partially rescued by blocking receptor editing but could be completely rescued by stronger survival signal like ectopic expression of BCL2. Importantly, rescuing the self-reactive B cells promoted production of auto-antibodies and gut inflammation. Mechanistically, we identify a specific activation of TGFβ signaling in self-reactive B cells in the gut and a critical role of this pathway in maintaining peripheral tolerance. Collectively, our studies describe functional consequences and fate of self-reactive B cells in GALT and provide novel mechanistic insights governing self-tolerance of B cells in the gut.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.