Abstract

Concentration is a key determining factor in the fluorescence properties of organic fluorophores. We studied self-quenching of disodium fluorescein (uranin) fluorescence in polyvinyl alcohol (PVA) thin films. The concentration dependent changes in brightness and anisotropy were followed by a lifetime decrease. We found that at a concentration of 0.54 M, the lifetime decreases to 7 ps. At a concentration of 0.18 M the lifetime was 10 ps with the relatively high quantum yield of 0.002. In these conditions the fluorescence intensity decay was homogeneous (well approximated by a single lifetime). We realized that such a sample was an ideal fluorescence lifetime standard for spectroscopy and microscopy, and therefore characterized instrument response functions for a time-domain technique. We show that self-quenched uranin enables measurements free of the color effect, making it a superior choice for a lifetime reference over scattered light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.