Abstract

We report on the self-propulsion of boiling droplets which, despite their contact with viscous, immiscible oil films, attain high velocities comparable to those of levitating Leidenfrost droplets. Experiments and model reveal that droplet propulsion originates from a coupling between seemingly disparate short and long timescale phenomena due to microsecond fluctuations induced by boiling events at the droplet-oil interface. This interplay of phenomena leads to continuous asymmetric vapor release and momentum transfer for high droplet velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.