Abstract

Porous equiatomic Nickel-Titanium (NiTi) is a strong candidate material for bone engineering applications because its mechanical properties are within the range of bone and its porosity allows for biologic interlock of the material to the surrounding tissue. Self-propagating high-temperature synthesis (SHS) is one method for producing porous NiTi. Nickel and titanium powders, -325 mesh, were mixed for 24 hours then pressed into cylindrical pellets (0.5 inch diameter, 0.5 inch height) to a theoretical green density of approximately 53%. The pellets were preheated in flowing argon for one hour then ignited using a tungsten coil. Scanning electron microscopy and electron dispersive spectroscopy (EDS) show localized differences of stoichiometry suggesting variations in the crystal structure where the Ni to Ti atomic ratio varied between 48.5:51.5 and 50.7:49.3. X-ray diffraction (XRD) (Philips X’Pert PRO) confirmed the presence crystalline equiatomic NiTi as well as other intermetallic compounds including NiTi2 and Ni4Ti3. Nanoindentation (MTS Nano Indenter XP) of this heterogeneous material indicates a mean range indentation modulus of 89.6 ± 9.4 GPa. This is on the same order of magnitude as bone, which has an elastic modulus range of 14-20 GPa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.