Abstract

An experimental setup has been developed and a study has been made of the self-propagating high-temperature synthesis in a Ti–C–Ni–Mo system under the conditions of action of ultrasonic vibrations. The influence of the amplitude of ultrasonic vibrations on the combustion rate and temperature and on the phase composition and structure of the derived composite material based on titanium carbide with a metal binder has been determined. The heat-transfer coefficient on the surface of a sample for vibrations at ultrasound frequency has been evaluated. Consideration has been given to possible mechanisms of influence of ultrasonic vibrations on the process of self-propagating high-temperature synthesis. It has been shown that the reduction in the synthesis temperature is due to the cooling of the sample because of the forced convection of the surrounding gas, whereas the change in the structure of the synthesized material is related to the change in the conditions of high-temperature heterogeneous interaction in the wave of self-propagating high-temperature synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call