Abstract

Herein we introduce a novel water-based graphite ink modified with multiwalled carbon nanotubes, designed for the development of the first wearable self-powered biosensor enabling alcohol abuse detection through sweat analysis. The stencil-printed graphite (SPG) electrodes, printed onto a flexible substrate, were modified by casting multiwalled carbon nanotubes (MWCNTs), electrodepositing polymethylene blue (pMB) at the anode to serve as a catalyst for nicotinamide adenine dinucleotide (NADH) oxidation, and hemin at the cathode as a selective catalyst for H2O2 reduction. Notably, alcohol dehydrogenase (ADH) was additionally physisorbed onto the anodic electrode, and alcohol oxidase (AOx) onto the cathodic electrode. The self-powered biosensor was assembled using the ADH/pMB-MWCNTs/SPG||AOx/Hemin-MWCNTs/SPG configuration, enabling the detection of ethanol as an analytical target, both at the anodic and cathodic electrodes. Its performance was assessed by measuring polarization curves with gradually increasing ethanol concentrations ranging from 0 to 50 mM. The biosensor demonstrated a linear detection range from 0.01 to 0.3 mM, with a detection limit (LOD) of 3 ± 1 µM and a sensitivity of 64 ± 2 μW mM−1, with a correlation coefficient of 0.98 (RSD 8.1%, n = 10 electrode pairs). It exhibited robust operational stability (over 2800 s with continuous ethanol turnover) and excellent storage stability (approximately 93% of initial signal retained after 90 days). Finally, the biosensor array was integrated into a wristband and successfully evaluated for continuous alcohol abuse monitoring. This proposed system displays promising attributes for use as a flexible and wearable biosensor employing biocompatible water-based inks, offering potential applications in forensic contexts.Graphical A novel water-based graphite ink modified with multiwalled carbon nanotubes designed for the development of a wearable self-powered biosensor enabling alcohol abuse detection through sweat analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.