Abstract
Photoanodes, which are used in photoelectrochemical (PEC) water splitting, have been shown to be applicable in the construction of a PEC biosensing platform. This was realized by replacing water oxidization with oxidation of an appropriate test molecule. Here, we have demonstrated the feasibility of adopting photoanodes consisting of zinc oxide nanorods arrays decorated with plasmonic gold nanoparticles (Au NPs@ZnO NRs) for the self-powered PEC bioanalysis of glutathione (GSH) in phosphate-buffered saline (PBS) at an applied bias potential of 0 V vs. Ag/AgCl. This heterostructure exhibited enhanced PEC properties because of the introduction of the Au/ZnO interface. Under visible light illumination, hot electrons from surface-plasmon resonance (SPR) at the Au NP surface were injected into the adjacent ZnO and subsequently driven to the photocathode. Under ultraviolet (UV) light illumination, the photogenerated electrons in ZnO tended to transfer to the fluorine-doped tin oxide due to the step-wise energy band structure and the upward energy band bending at the ZnO/ electrolyte interface. These results indicate that plasmonic metal/semiconductor heterostructure photoanodes have great potential for self-powered PEC bioanalysis applications and extended field of other photovoltaic beacons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.