Abstract

A self-powered photoelectrochemical (PEC) aptasensor was constructed based on MIL-68(In) derived indium oxide hollow nanotubes (In2O3 HNs) and Ag-doped ZnIn2S4 quantum dots (QDs) as sensing matrix for the ultrasensitive detection of oxytetracycline (OTC). The hollow tube structure of the designed photoelectric active platform provided abundant active sites and a larger specific surface area for the immobilization of target recognition unit. The coupling of Ag:ZnIn2S4 QDs and In2O3 HNs can accelerate the transmit and separation of photoinduced charge, and thus greatly increasing the intensity of photocurrent signal. Then, the well-constructed OTC-aptamer was anchored on the modified photoelectrode as an accurate capturing element, achieving the specific detection of analyte. Under optimal conditions, the photocurrent intensity of the PEC aptasensor decreases linearly, with a linear response range of 10-4 -10nmol/L, and a limit of detection (LOD) of 3.3×10-5nmol/L (S/N=3). The developed self-powered aptasensor with excellent reproducibility, stability, and selectivity, provides a potential way to detect antibiotic residues in environmental media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.