Abstract
AbstractAccurate plantar pressure mapping systems with low dependence on the external power supply are highly desired for preventative healthcare and medical diagnosis. Herein, we propose a self‐powered smart insole system that can perform both static and dynamic plantar pressure mapping with high accuracy. The smart insole system integrates an insole‐shaped sensing unit, a multi‐channel data acquisition board, and a data storage module. The smart insole consists of a 44‐pixel sensor array based on triboelectric nanogenerators (TENGs) to transduce pressure to the electrical signal. By optimizing the sensor architecture and the system's robustness, the smart insole achieves high sensitivity, good error‐tolerance capability, excellent durability, and short response–recovery time. Various gait and mobility patterns, such as standing, introversion/extraversion, throwing, and surpassing obstacles, can be distinguished by analyzing the acquired electrical signals. This work paves the way for self‐powered wearable devices for gait monitoring, which might enable a new modality of medical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.