Abstract

Diabetic wounds with complex pathological features and a difficult-to-heal nature remain a formidable challenge. To address this challenge, we design and fabricate a self-powered enzyme-linked microneedle (MN) patch composed of anode and cathode MN arrays, which respectively contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles. The enzymatic cascade reaction in the MN patch can effectively reduce local hyperglycemia in diabetic wounds while generating stable microcurrents to promote rapid healing of diabetic wounds. Therefore, the diabetic wounds treated with this MN patch exhibit rapid, complete, and scar-preventative healing, which can be attributed to the synergistic actions of hypoglycemic, antibacterial, anti-inflammatory, and bioelectrical stimulation. In brief, the self-powered MN patch is an effective method to rapidly promote diabetic wound healing and prevent scar formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.