Abstract

The physical filtration mechanism of a traditional face mask has a low removal efficiency of ultrafine particulates in the size range of 10-1000 nm, which are badly harmful to human health. Herein, a novel self-powered electrostatic adsorption face mask (SEA-FM) based on the poly(vinylidene fluoride) electrospun nanofiber film (PVDF-ESNF) and a triboelectric nanogenerator (TENG) driven by respiration (R-TENG) is developed. The ultrafine particulates are electrostatically adsorbed by the PVDF-ESNF, and the R-TENG can continually provide electrostatic charges in this adsorption process by respiration. On the basis of the R-TENG, the SEA-FM shows that the removal efficiency of coarse and fine particulates is higher than 99.2 wt % and the removal efficiency of ultrafine particulates is still as high as 86.9 wt % after continually wearing for 240 min and a 30-day interval. This work has proposed as a new method of wearable air filtration and may have great prospects in human health, self-powered electronics, and wearable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call