Abstract

Human skin is the largest organ, which covers the human body and provides us the mechanical stimuli to help us interact with the outer environment. Inspired from the properties of human skin, imitating of the complicated human sensation using stretchable electronic devices becomes one of the most exciting research fields due to its vast potential application fields like wearable electronics, healthcare monitoring and artificial intelligence. To mimic real human skin, the huge sensor network is required to attach the body, where it seems critical to guarantee the energy supply at the same time. Nowadays, the emerging triboelectric nanogenerator (TENG), which can transduce the mechanical energy into the electrical energy based on the contact electrification and electrostatic induction, provides an attractive solution for the energy problem to work as the self-powered sensor. The self-powered sensor can generate electrical signal by itself, responsing to the stimulation from the environment without further energy supply devices. With four fundamental working modes and three main detection modes, TENG could develop versatile configurations to realize the various kinds of sensation. The mechanical compliance and stretchability together with the electrical conductance can be fulfilled beneficial from the advancement of material and micro/nano fabrication technology. In this way, the TENG based self-powered electronic skins (e-skins) have been developed with rational design to accomplish multifunctions of sensing including the pressure, position, strain, sliding and so on. It is expected that the self-powered e-skin will continue its fast development and make more progress to make the e-skin come into human life in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.