Abstract

An artificial retina system shows a promising potential to achieve fast response, low power consumption, and high integration density for vision sensing systems. Optoelectronic sensors, which can emulate the neurobiological functionalities of retinal neurons, are crucial in the artificial retina systems. Here, we propose a WSe2 phototransistor with asymmetrical van der Waals (vdWs) stacking that can be used as an optoelectronic sensor in artificial retina systems. Through the utilization of the gate-tunable self-powered bidirectional photoresponse of this phototransistor, the neurobiological functionalities of both bipolar cells and cone cells, as well as the hierarchical connectivity between these two types of retinal neurons, are successfully mimicked by a single device. This self-powered bidirectional photoresponse is attributed to the asymmetrical vdWs stacking structure, which enables the transition from an n-p to p+-p homojunction in the WSe2 channel under different polarities of gate bias. Moreover, the detectivity and ON/OFF ratio of this phototransistor reach as high as 1.8 × 1013 Jones and 5.3 × 104, respectively, and a rise/fall time <80 μs is achieved, as well, which reveals good photodetection performance. The proof of this device provides a pathway for the future development of neuromorphic vision devices and systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.