Abstract

Visual adaptation that can autonomously adjust the response to light stimuli is a basic function of artificial visual systems for intelligent bionic robots. To improve efficiency and reduce complexity, artificial visual systems with integrated visual adaptation functions based on a single device should be developed to replace traditional approaches that require complex circuitry and algorithms. Here, we have developed a single two-terminal opto-sensor based on multilayer γ-InSe flakes, which successfully emulated the visual adaptation behaviors with a new working mechanism combining the photo-pyroelectric and photo-thermoelectric effect. The device can operate in self-powered mode and exhibit good human-eye-like adaptation behaviors, which include broadband light-sensing image adaptation (from ultraviolet to near-infrared), near-complete photosensitivity recovery (99.6%), and synergetic visual adaptation, encouraging the advancement of intelligent opto-sensors and machine vision systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.