Abstract

Electrochemical conversion of CO2 to highly valuable ethanol has been considered a intriguring strategy for carbon neutruality. However, the slow kinetics of coupling carbon-carbon (C-C) bonds, especially the low selectivity ethanol than ethylene in neutral conditions, is a significant challenge. Herein, the asymmetrical refinement structure with enhanced charge polarization is built in the vertically oriented bimetallic organic frameworks (NiCu-MOF) nanorod array with encapsulated Cu2 O (Cu2 O@MOF/CF), which can induce an intensive internal electric field to increase the C-C coupling for producing ethanol in neutral electrolyte. Particularly, when directly employed Cu2 O@MOF/CF as the self-supporting electrode, the ethanol faradaic efficiency (FEethanol ) could reach maximum 44.3 % with an energy efficiency of 27 % at a low working-potential of -0.615 V versus the reversible hydrogen electrode (vs. RHE) using CO2 -saturated 0.5 M KHCO3 as the electrolyte. Experimental and theoretical studies suggest that the polarization of atomically localized electric fields derived from the asymmetric electron distribution can tune the moderate adsorption of *CO to assist the C-C coupling and reduce the formation energy of H2 CCHO*-to-*OCHCH3 for the generation of ethanol. Our research offers a reference for the design of highly active and selective electrocatalysts for reducing CO2 to multicarbon chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.