Abstract

An epitaxial lead free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) thin film is fabricated on a (001)Nb:SrTiO3 single crystalline substrate by the pulsed laser deposition method. The 2.3% lattice mismatch between the BZT-BCT and substrate suggests that the film is grown under a compressively strained state by leaving a large strain gradient near the interface. Polarization versus electric field measurement reveals that the film exhibits a ferroelectric hysteresis character with a large imprint effect indicating the existence of an internal electric field. The origin of the internal electric field is correlated with the strain gradient induced flexoelectric effect and the interfacial built-in field. Consequently, the resultant internal electric field could lead to a self-polarized non-switchable layer at the interface. The evidence for the envisaged self-polarization effect is indeed shown by the piezo force microscopic measurements. Importantly, photovoltaic studies performed on the film display an open circuit voltage of 1.1 V, which is higher than the values reported for many ferroelectric films. The observed photovoltaic response is correlated with the depolarization field and the self-polarization effect. The demonstrated large photo-response illustrates the application potential of the BZT-BCT system in photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call