Abstract

A potentially active hindered amine light stabilizer (HALS) was successfully anchored onto multiwalled carbon nanotubes (MWCNTs) and used as a light-stabilizing yet reinforcing multifunctional nanofiller to obtain UV-durable polymer nanocomposites. The influence of such light stabilizing MWCNTs on the photo-oxidation behaviour and structure-properties of polypropylene (PP) was studied. The composites were prepared by solution mixing of MWCNTs followed by melt compounding with polypropylene (PP). The resulting composite exhibits excellent UV-durability showing an almost 20 fold increase in the induction period of photo-oxidation. Moreover, the hydrophobic HALS was found to be compatibilizing enough to achieve homogeneous dispersion of exfoliated nanotubes into a polymer matrix. The rheological characterizations predict the formation of a percolated network structure. The obtained nanocomposites present markedly improved mechanical properties which underline the reinforcing ability of functionalized MWCNTs. Overall combination of HALS and MWCNTs offers an attractive route to combine multifunctionality into new hybrid UV-durable polymer nanocomposites. Such materials may possess great potential for outdoors high performance applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.