Abstract

Ecological and evolutionary processes may become intertwined when they operate on similar time scales. Here we show ecological-evolutionary dynamics between parasitoids and aphids containing heritable symbionts that confer resistance against parasitism. In a large-scale field experiment, we manipulated the aphid's host plant to create ecological conditions that either favoured or disfavoured the parasitoid. The result was rapid evolutionary divergence of aphid resistance between treatment populations. Consistent with ecological-evolutionary dynamics, the resistant aphid populations then had reduced parasitism and increased population growth rates. We fit a model to quantify costs (reduced intrinsic rates of increase) and benefits of resistance. We also performed genetic assays on 5 years of field samples that showed persistent but highly variable frequencies of aphid clones containing protective symbionts; these patterns were consistent with simulations from the model. Our results show (1) rapid evolution that is intertwined with ecological dynamics and (2) variation in selection that prevents traits from becoming fixed, which together generate self-perpetuating ecological-evolutionary dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.