Abstract

Remarkable optical/electrical features are expected in two-dimensional group-IV monochalcogenides (MXs; M = Sn/Ge and X = S/Se) with a uniquely distorted layered structure. The lone pair electrons in the group-IV atoms are the origin of this structural distortion, while they also cause a strong interlayer force and high chemical reactivity. The fabrication of chemically stable few-to-monolayer MX has been a significant challenge. We have observed that, once the SnS surface is oxidized, the SnOx top layer works as a passivation layer for the SnS layer underneath. In this work, the SnOx/SnS hetero-structure is studied structurally, optically, and electrically. When tape-exfoliated bulk SnS is oxygen-annealed under a reduced pressure at 10 Pa, surface oxidation and SnS sublimation proceed simultaneously, resulting in a monolayer-thick SnS layer with the SnOx passivation layer. The field-effect transistor of nine-layer SnS prepared via mechanical exfoliation exhibits a p-type characteristic because of intrinsic Sn vacancies, whereas ambipolar behavior is observed for the monolayer-thick SnS obtained via oxygen annealing probably owing to the additional n-type doping by S vacancies. This work on monolayer-thick SnS fabrication can be applied to other unstable lone pair analogues and can facilitate future research on MXs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call