Abstract

Automated multi-organ segmentation on abdominal CT images may replace or complement manual segmentation for clinical applications including image-guided radiation therapy. However, the accuracy of auto-segmentation is challenged by low image contrast, large spatial and inter-patient anatomical variations. In this study, we propose an end-to-end segmentation network, termed self-paced DenseNet, for improved multi-organ segmentation performance, especially for the difficult-to-segment organs. Specifically, a learning-based attention mechanism and dense connection block are seamlessly integrated into the proposed self-paced DenseNet to improve the learning capability and efficiency of the backbone network. To heavily focus on the organs showing low soft-tissue contrast and motion artifacts, a boundary condition is utilized to constrain the network optimization. Additionally, to ease the large learning pace discrepancies of individual organs, a task-wise self-paced-learning strategy is employed to adaptively control the learning paces of individual organs. The proposed self-paced DenseNet was trained and evaluated on a public abdominal CT data set consisting of 90 subjects with manually labeled ground truths of eight organs (including spleen, left kidney, esophagus, gallbladder, stomach, liver, pancreas, and duodenum). For quantitative evaluation, the Dice similarity coefficient (DSC) and average surface distance (ASD) were calculated. An average DSC of 84.46% and ASD of 1.82 mm were achieved on the eight organs, which outperforms the state-of-the-art segmentation methods 2.96% on DSC under the same experimental configuration. Moreover, the proposed segmentation method shows notable improvements on the duodenum and gallbladder, obtaining an average DSC of 69.26% and 80.94% and ASD of 2.14 mm and 2.24 mm, respectively. The results are markedly superior to the average DSC of 63.12% and 76.35% and average ASD of 3.87 mm and 4.33 mm using the vanilla DenseNet, respectively, for the two organs. We demonstrated the effectiveness of the proposed self-paced DenseNet to automatically segment abdominal organs with low boundary conspicuity. The self-paced DenseNet achieved consistently superior segmentation performance on eight abdominal organs with varying segmentation difficulties. The demonstrated computational efficiency (<2 s/CT) makes it well-suited for online applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.