Abstract

The channel of the accommodation of the energy of a heterogeneous chemical reaction (recombination of hydrogen atoms) related to vibrational V-V exchange between excited chemical reaction products and adsorption layer molecules (H2O, HDO, D2O, and H2) was studied by the method of modulated molecular beams. The chemical reaction was found to proceed in an oscillatory mode caused by the nonequilibrium character of its elementary steps. The participation of adsorbed molecules in accommodation was studied by analyzing nonequilibrium desorption of these molecules. An isotope effect was observed in nonequilibrium desorption. The kinetic mechanism of the reaction and the micromechanism of elementary reaction events, which determine the “physical” mechanism of catalysis in the system under study, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.