Abstract

We examine theoretically low-frequency and high-frequency self-oscillations of electronic and nuclear polarization in an Si/CaF2 nanostructure in a transverse magnetic field. We show that the low-frequency self-oscillations are stable in zero field, and the analogous high-frequency oscillations are stable beyond the region of the maximum on the Hanle curve. The frequency of the low-frequency oscillations is 0.001–0.500 of the reciprocal nuclear longitudinal relaxation time; the frequency of the high-frequency oscillations is 108–109 Hz, and their amplitude reaches 50% of the initial electronic spin polarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call