Abstract

The self-oscillation device has many advantages and is therefore suggested to be used in the pipeline supercharger. Simulation and analysis on the pressure-increasing effect of the pipeline supercharging caused by self-oscillation cavity were carried out by finite element method. The cavity structure of self-oscillation device was designed using the fluid network theory, natural frequency calculation, resonance conditions and Large Eddy Simulation Theory. A series of flow field distribution chart of the self-oscillation cavity were obtained. Results validate that the self-oscillation device is effective to increase the pressure of the pipeline supercharger. The relation curves of pressure-increasing effect with different structure parameters of the cavity were further analyzed. Previous experimental results are accordant with the present simulation results. It shows that the numerical analyses are reliable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call