Abstract
The design of a mesoscopic self-oscillating heat engine that works thanks to purely quantum effects is presented. The proposed scheme is amenable to experimental implementation with current state-of-the-art nanotechnology and materials. One of the main features of the structure is its versatility: The engine can deliver work to a generic load without galvanic contact. This makes it a promising building block for low-temperature on-chip energy management applications. The heat engine consists of a circuit featuring a thermoelectric element based on a ferromagnetic insulator-superconductor tunnel junction and a Josephson weak link that realizes a purely quantum DC/AC converter. This enables contactless transfer of work to the load (a generic RL circuit). The performance of the heat engine is investigated as a function of the thermal gradient applied to the thermoelectric junction. Power up to $1$ pW can be delivered to a load $R_L=10\ \Omega$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.