Abstract
Thermal springs in the Idaho batholith (USA) discharge at discrete locations along a 50+ km reach of the Middle Fork of the Boise River (MFBR). Recharge water flows through Basin and Range extension fractures where it is heated by the geothermal gradient and ultimately discharges from the damage zone of the trans-Challis faults located near the bottom of the MFBR. Stable isotopes of water, 14C groundwater ages, fracture and fault orientations, fracture volume changes due to chemical evolution, and recharge area calculations suggest that the thermal springs issue from individual hydrothermal systems and that they are self-organizing. Water evolves chemically along flow paths, dissolving feldspars and precipitating secondary minerals. Secondary minerals accumulate in less-efficient fractures and are flushed from the more efficient ones. Flow-area calculations using heat-flow, exponential decay-of-porosity, and curve-intersection methods show that many of the thermal systems extend beyond their immediate topographic watershed, and that some capture water from adjacent watersheds. Geochemical/flow feedback loops that provide a mechanism for self-organization are modeled using PHREEQC, and positive and negative fracture volume changes are calculated. Criteria for identifying self-organizing granitoid thermal groundwater systems are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.