Abstract
Learning and memory are two intertwined cognitive functions of the human brain. This paper shows how a family of biologically-inspired self-organizing neural networks, known as fusion Adaptive Resonance Theory (fusion ART), may provide a viable approach to realizing the learning and memory functions. Fusion ART extends the single-channel Adaptive Resonance Theory (ART) model to learn multimodal pattern associative mappings. As a natural extension of ART, various forms of fusion ART have been developed for a myriad of learning paradigms, ranging from unsupervised learning to supervised learning, semi-supervised learning, multimodal learning, reinforcement learning, and sequence learning. In addition, fusion ART models may be used for representing various types of memories, notably episodic memory, semantic memory and procedural memory. In accordance with the notion of embodied intelligence, such neural models thus provide a computational account of how an autonomous agent may learn and adapt in a real-world environment. The efficacy of fusion ART in learning and memory shall be discussed through various examples and illustrative case studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.