Abstract
Temporal-Difference-Fusion Architecture for Learning, Cognition, and Navigation (TD-FALCON) is a generalization of adaptive resonance theory (a class of self-organizing neural networks) that incorporates TD methods for real-time reinforcement learning. In this paper, we investigate how a team of TD-FALCON networks may cooperate to learn and function in a dynamic multiagent environment based on minefield navigation and a predator/prey pursuit tasks. Experiments on the navigation task demonstrate that TD-FALCON agent teams are able to adapt and function well in a multiagent environment without an explicit mechanism of collaboration. In comparison, traditional Q-learning agents using gradient-descent-based feedforward neural networks, trained with the standard backpropagation and the resilient-propagation (RPROP) algorithms, produce a significantly poorer level of performance. For the predator/prey pursuit task, we experiment with various cooperative strategies and find that a combination of a high-level compressed state representation and a hybrid reward function produces the best results. Using the same cooperative strategy, the TD-FALCON team also outperforms the RPROP-based reinforcement learners in terms of both task completion rate and learning efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.