Abstract

Wireless Brain Machine Interface (BMI) communication protocols are faced with the challenge of transmitting the activity of hundreds of neurons which requires large bandwidth. Previously a data compression scheme for neural activity was introduced based on Self Organizing Maps (SOM). In this paper we propose a dynamic learning rule for improved training of the SOM on signals with sparse events which allows for more representative prototype vectors to be found, and consequently better signal reconstruction. This work was developed with BMI applications in mind and therefore our examples are geared towards this type of signals. The simulation results show that the proposed strategy outperforms conventional vector quantization methods for spike reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.